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Stochastic perturbations of the five-component BCnard system 

Roberto Benzit and Alfonso Suteraj 
t Centro Scientific0 IBM, Via del Giorgione 129 Roma, Italy 
$ The Center for the Environment and Man, Windsor Street 275, 06120 Hartford, 
Connecticut, USA 

Received 9 August 1983 

Abstract. We study the effect of small stochastic perturbations on a simple dynamical 
system describing a Benard flow. 

1. Introduction 

In this paper we study the effect of small stochastic perturbations on a severely truncated 
two-dimensional convective fluid system. There have been several papers that consider 
the same problem for the Lorenz model (Sutera 1980, Moritz and Sutera 1981, Zippelius 
and Lucke 1981). In these studies it has been noticed that the noise induces transition 
at random times among the stable steady states of the system. In this case, chaotic 
behaviour, similar to turbulence motion, would be generated by the effect of the noise. 
However a large noise is required if such transitions have to occur on a time scale of 
any possible physical interest. 

We investigate the effect of introducing additional scales in the limit of large aspect 
ratio of the system. In particular we study how the transition time, i.e. the average 
exit time from the attraction basin of stable steady states, depends on the additional 
scales and on the aspect ratio. We find that for large value of the aspect ratio and 
particular choice of the additional scales the same noise that would produce very long 
exits in the Lorenz model, is able to trigger exits on a much shorter time scale. We 
believe that this effect is quite general for systems with large aspect ratios. This belief 
follows from a simple dimensional argument independent of our model. The 
dimensionless time variable in a BCnard system is 

tad = ( U /  H 2 ) t  

where H is the thickness of the layer. It follows that large aspect ratios (H+O,  L 
fixed) correspond to an infinite dimensionless time scale in which the motion occurs. 
On the other hand, the dimensionless time scale of Wiener’s process with variance E 

is 1 / ~ .  Hence when 1 / ~  - u / H  the effect of the noise occurs on the same time scale 
of the deterministic dynamics. Indeed we will show, with our simple model, that the 
statistical properties of the system depend of the quantity ET2 (r = L/  H aspect ratio). 
There is scarce evidence from laboratory experiments (Ahlers and Walden 1980, 
Greenside et a1 1983) that a mechanism, similar to the one here discussed, occurs. 
However, if the previous scale argument is correct, this mechanism should be observed 
for a proper choice of the physical parameters. In this case, we propose a technique 
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to detect if the noise is responsible for the transitions and to measure its variance. 
This technique is based upon the concept of stochastic resonance as discussed by Benzi 
et al (198 1). 

In § 2 we describe the model employed. Section 3 is devoted to the discussion of 
an asymptotic estimates of the exit integrations in § 4.  In § 5 the mechanism of stochastic 
resonance is discussed for the model. Conclusions follow in § 6. 

2. The model 

The physical system we consider is a two-dimensional fluid layer heated from below 
with periodic free stress boundary conditions. Following Saltzman (1962), we write 
the equations of motion in a dimensionless form: 

(1’) 
a , A +  + J (  +, A + )  - c+d,O - CA’+ = 0 

a,@ + J (  +, 0 )  - Raa,+ - A @  = 0 

(a list of symbol is given in appendix I) .  Using the periodic boundary conditions, we 
expand + and 0 in a Fourier series: 

The system of partial differential equations (1) is an  infinite system of ordinary 
differential equations for the modes +(I, n, t )  and @ ( I ,  n, t )  (Saltzman 1962). Among 
all the modes, we select the five terms 

Re +(m, l), Im O(m, I ) ,  Re +@, l), Im 0@, 1). Im 0(0 ,2) .  (3) 

Physically they describe a system of two Rayleigh rolls, one with wavenumber m and 
the other one with wavenumber p ,  interacting through the temperature gradient 
Im 0(0,2). No inertial interaction of the velocity field is considered. According to 
Busse (1978), this implies certain limitations on both the Prandtl number and the 
boundary conditions. In this paper we will not investigate this point. 

By using the following scaling 

x ,  = S, Re +(m, 1) XP = s p  Re +@, 1) 

y ,  = T,  Im @(m, 1) 

z = T2 Im 0 (0 ,2 )  
y p  = Tp Im 0@, 1) 

(S,, Sp, T,, Tp and T2 are listed in appendix l), we get a dynamical system which 
describes the deterministic evolution of the modes (3): 

fm = c + ( y m  - xm) (4a) 

(46) 

f = ( + ( a p / a m ) ( Y p  - x p )  ( 4c )  
,’p = ( a p  / a m  I[( / r p  ) rxp - ~p - ( rm / rp 1 zxpl ( 4 d )  

y, = rx, - y ,  - x,z 
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i = - bz + x,y, + xPyp (4e) 

When xp = yp = 0, (4a), (46) and (4e) reduce to the Lorenz model. 
The wavenumber m is chosen such that r,,, is a minimum, which implies that m is 

the critical wavenumber (Busse 1978) and it depends on the aspect ratio r =  L / H  
through the relationship 

m 2  = ir2. (5) 

Using equation (5) we obtain b =! in (4e); the same value used by Lorenz (1963). (5) 
implies rp > r, for any p .  Hereafter we choose p = m + 1 which minimises the ratio 
rp/rm. Leaving the Prandtl number as a free parameter, our model is completely 
specified. 

We discuss the effect of stochastic perturbations on the dynamical system (4). We 
model an external stochastic perturbation by using an additive white noise: 

dx, = ~ ( y ,  - x,) dt  + E I /* dw, 

dy, = (rx, - y ,  - zx,) d t  + &;I2 dw, 

where dw, are Wiener processes, (dw, dw,) = 8,, dt  and E ,  << 1 for i = 1 . . . 5. From the 
theory of stochastic differential equations, we know that in the limit E ,  + 0 the solution 
of the system (6) forms a Markov process, its states being the steady solutions and the 
periodic orbits of the deterministic system (4); transitions among the states happen at 
random times. Our goal is to estimate the average value of these times as a function 
of the aspect ratio, the Rayleigh number, the Prandtl number and E,.  

3. Analytical results 

We confine our analysis in the range of the Rayleigh number 1 < Ra/ R a , s  2 where 
Ra, is the critical Rayleigh number. It implies that 1 < r 2. In this case no hydro- 
dynamical instability of Rayleigh’s rolls can occur for equations ( I )  (Busse 1978). As 
a consequence the phase space of the system is characterised only by stable and 
unstable fixed points. In  table 1 we summarise the positions and the stability of the 
fixed points in our model. By the symmetry of the system, we need to compute only 
the average transition time between the two stable steady states P,  and Pz. 

Let us consider a system of stochastic differential equations 

dx, = f ; ( x )  d t  + & : I 2  dw, (7) 

where i = 1 . . . N. Let P = (x, ,  x2, .  . . xN)  be a stable fixed point of the deterministic 
vector field f and R its basin of attraction: 

f;(x) = 0. 

The average exit time from R with initial conditions x,(O) = y ,  is defined as 

~ ( ~ ) = i n f { t :  x , ( t ) ~ d R ;  x,(O)= yz} 
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Table 1. Fixed points and their stability properties for the deterministic equations (4) 

Fixed points Stability properties 

XW,, Y,,,, x,”. Y,. 2 

P , = ( - D ,  -0, 0, 0, G) stable for 1 < r < rT 
P,=(+D, +D, 0, 0, G)  stable for 1 < r < rT 
P 3 = (  0,  0, -F, -F, H )  unstable 
P 4 = (  0, O , + F , + F ,  H )  unstable 
Ps = (  0% 0,  0, 0, 0 )  stable for r < 1 ,  unstable for r > I 

D = [ b( r - F = [ b( r - r p /  r,,,)]” ‘, G = r - 1, H = r - r,,/ r,,,, rT = D( D + b + 3)/  
( U -  b -  I ) .  

where dR is the boundary of a. r ( y )  is the solution of Dynkin’s equation (Dynkin 1965): 

c [ i E . - + / ; i i - ]  , a2r = - 1  
I ay, ay, 

with boundary conditions r ( y )  = 0 for y ,  E dR. I f f ;  is the gradient of a function 4, then 
an  estimation for ~ ( y )  can be found using the saddle-point technique to evaluate the 
solution of equation (8). In this section we shall use this fact to estimate the average 
exit time for the system of stochastic differential equations (6). 

In order to reduce the deterministic part of (6) to the gradient of a function, we 
employ asymptotic methods for stochastic differential equations (Papanicolau 1978, 
Graham and Schenlze 1983). These methods can be applied on  (6 )  using different 
techniques sharing the common assumption that the deterministic dissipative times are 
much shorter than any other time scale of the system. In our case, the assumption is 
equivalent to considering ( r  - 1) small enough such that the probability distribution 
can be approximated as power series of the ‘small’ parameters l / b  and l / ( u  + 1). The 
expansion can be carried out by using the system of stochastic differential equations 
(6) which, to the first order in l / b  and l / ( u + l ) ,  reduces to the following for (see 
appendix 2 for details) 

U uffp 
U 

u + l  

The deterministic forcing on the right-hand side of (9) depends on and E ~ ,  due  to 
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Ito’s calculus applied in appendix 2. The overall effect of these terms is to renormalise 
the critical value of r at which finite amplitude convection develops. For small values 
of and we can neglect these terms. We also disregard all the terms on the 
right-hand side of equations (9) containing products of x, and x, with Wiener’s 
processes. Again the latest approximation is valid in the limit of very small noises. 

Introducing the variables 

A, = x , ( r m / a , ) 1 / 2  

A, = xp(rp/a,)1’2 

we finally obtain 

dA,=- ( r -  l)Am-- dw, 
u + 1  

(13) 

We remark that because of the several approximations employed here, the estimate 
for the average exit time for ( 1  3) is only an upper bound of the average exit time for 
(6). This upper bound should be close to the true values in the limit of small variance 
of the noise. 

The change of variables (10) and ( 1  1 )  have been determined in a way such that the 
deterministic vector field of (13) is the gradient of the function + 

Labelling the fixed points of (13) as in table 1 ,  we easily compute the average exit 
times from the basin of attraction of PI (see Schuss 1980): 

T = A exp(2/~)(a,/r,)A+. (15) 

In equation (15) A +  = min{l+(P3) - +(PI)/, I+(P4)- +(PI)[, I+(Ps) - +(Pl)ll and A is a 
constant independent of E, computed below. Because of the symmetry +( 5) = +( P4). 
It follows that A+ = min{J+(P3) - +(PI)[, 1+(P5)- +(PI)[}. 

We remark that in the Lorenz model (obtained from (4) for x, .= y ,  = 0 )  the only 
fixed points are PI, P2 and Ps. It follows that the exit time for the Lorenz model is 
given by equation (15 )  with A+ = { l + ( P s ) - + ( P 4 ) l } .  Thus the effect of Rayleigh’s roll 
described by modes xp and yp  is summarised as follows: if + ( P 3 ) <  + ( P s )  then the 
average exit time from the basin of attraction of PI is smaller than the corresponding 
average exit time for the Lorenz model. In this case, the interaction between the two 
Rayleigh rolls enhances the probability of transition between the stable steady states 
of the system. By straightforward algebraic calculations, we obtain 
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It is easy to show that 4 (  P 3 )  < 4( Ps)  for r > 1 and for any value of r and (T. 

Using the ray method, as discussed in Schuss (1980) and Ludwig (1 9 7 9 ,  it is possible 
to compute the constant A in equations (15). The final result for the average exit time 
is 

In the limit of large aspect ratio, we can evaluate 7 from (18) as a power series of l/r. 
Recalling that m2 = AT2 and p = m + 1 we obtain 

r o + ~  3 r 2  8ff 32 
7=---  ( r -  1 ) ~ .  

2 0 32 e x p 3 ~ ( a + 1 )  3 r  

Equation (19) requires two remarks. First, for T + m  and fixed value of e, (19) 
looses its validity because the saddle-point technique is no longer a good approximation. 
In this case solutions of (6) are similar to a random walk on the trajectory linking the 
points P,  - P3 - Pz - P4 with diffusion time proportional to 1 / E .  Secondly the exponen- 
tial dependence of 7 on T2 implies that the effect of stochastic forcing is amplified by 
a factor Tz. In clarifying this effect, we calculate the average exit time in the case of 
Lorenz model. This is done using equations (13) with A, = 0: 

dA, = - 
a + l  

In the limit of large r, we obtain 

T r ( a + l )  4 a  

J 2 a ( r - 1 )  3e a + ]  
exp - - ( r  - I ) ~ .  - 

TLorenr -  - 

Thus for instance, for r = 20 and e = 0.01, r = 2 and a = 1 from (19) we obtain 

r = 4124 

while for the Lorenz model we have 

rL,,e,z = 3.57 x io5*. 

4. Numerical results 

To test the performance of approximation (1 9), two sets of numerical integrations have 
been done: one for fixed noise and different aspect ratios and the other for increasing 
noise with smaller aspect ratios. In both cases we set a = 1. In the first set of 
numeric21 integration2 the valucof E ,  was 0.02 and the values of the aspect ratios were 
642, 812, 1042, 1242 and 1442. Figure 1 shows x , ( t )  as a function of time for the 
different aspect ratios. The behaviour of the system agrees with the discussion given 
at the end of the previous section: larger aspect ratios correspond to stronger effects 
of the noise in the system. 

In table 2 a quantitative comparison between numerical integrations and equations 
(19) is given. The number of exits in the samples are compared with the theoretical 
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( a )  
500 1000 

2) fhl 

500 1000 -i€ 

2 
0 

- 2  

- - - 
Figure 1. x,,, as functjon of time for increasing aspect ratios, ( a )  6V2, ( b )  8V2, ( c )  I d 2 ,  
( d )  1 2 ~ " 2  and ( e )  14J2. The parameter values are E ,  = 0.02, U = I ,  r = 2.  The display time 
is 120 time units of the model. 

Table 2. Theoretical and computed numbers of exits for the numerical integrations of 
figure I .  The value of r is given by 2 m J 2 .  The theoretical estimates are obtained using 
equation (19). 

m Observed exits Predicted exits 

3 0 0 
4 0 0 
5 8 3 
6 18 15 
I 36 35 

prediction. The estimates obtained using (19) agree fairly well with the numerical 
results, the agreement being better for larger aspect ratios. 

For a more quantitative verification, we performed a second numerical test using 
different noises with different aspect ratios. The noise has been chosen such that the 
theoretical estimate for the exit time is constant. This gives a relationship between the 
noise and  the aspect ratio: 

8 u ( r  - 1) 32 T(U + 1) 3r2 
E =  - In( _____ -) 

3(u+1)  3 r 2  2 r u  32 ' 

- 
We choose r to be 341 1 corresponding to r = 144'2 and e, = 0.02. In figure 2 x, is 
plotted aainst time, while figure 3 reports x, for the same numerical integration keeping 
x = y = 0 (i.e. for the Lorenz model). The number of exits is a smooth function of the 
aspect ratio which confirms the validity of (19). Moreover the theory agrees in estimating 
the amplification of the noise with respect to'the Lorenz model. Indeed in figure 3 no  
exits are shown for the stochastically perturbed Lorenz model, although the same noise 
has been used. Figure 4 is the projection of the numerical solution into the plane x,, 
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Id 2 
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Figure 2. As figure I for increasing values of the noise. The values of E ,  are obtained, 
using equation (19), such that the average exit time is independent of r. 
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- 2  

(bl 
2 
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- 2  
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I C )  
500 iooa 

( d )  
2 
0 

-2 
500 1000 

CI (el  
2 
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-2 
500 1000 

Figure 3. As in figure 2 for the case xp = y p  = 0 (the Lorenz model) 

- 
xp for r =  1442. We see that the path of exits are trajectories passing through the 
unstable fixed points P,, P4. 

We conclude that (19) can be used with good accuracy in calculating the statistical 
properties of the stochastic differential equations ( 6 ) .  

5. The stochastic resonance 

The mechanism of stochastic resonance has been discussed by Benzi et a1 (I98 1 hereafter 
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..I ... 
.-l .L""P a+.: . .w%2&. .. c ,  ,.l ::. C.'. 

..... - e .  - .. . .  1 ..... . . . .  ... I .  . .  . . 

- 
Figure 4. Phase space x,,, xp  for r = 1&2, E ,  = 0.02, U = I and r = 2 (case ( e )  of figure 1). 

referred to as I) in the case of stochastic differential equation 

dx  = [x( U - x') + A  COS w t ]  d t  + E ' / '  dw. (23) 
In I it was shown that the solution of (23) has nearly periodic transitions between the 
two stable fixed points ( * J a )  when the following two conditions are satisfied 

--= ?r exp 2 (1  +$) << t. 
aJ2 2.5 

(b) 

We discuss this mechanism in the framework of the system defined by (6). We 
introduce a slow periodic forcing term on the right-hand side of (6b): 

dx, = u(y, - x,) dt  + E  !'2 dw, 

dy, = [rx, - y, -xmz + B cos w t ]  d t  dw, 

d x , = ~ ( ~ , / ~ , ) ( ~ , - ~ ~ ) d t + E ~ ' ~ d W ~  

d y,  = - [ ( r, / r, ) rx, - y, - ( r ,  / rp ) zx, ] (2 
dz = (-bz + X,Y, + x,y,) d t  + E;'' dw,. 

Performing the same asymptotic analysis as that discussed in 9 3 and in appendix 2, 
we derive the set of two stochastic differential equations 

a', f f a  
u + l  471. r, 4?r2r, 

dA,=- ( r - l ) A , - ~ A ~ - - A , A ~ +  

+ E ' ~ 2 ( & ) ) ' i 2  dw, 
a m  

I / '  

dA, =(+ u + 1  [ cyp a ,  (: r - 1) A, -7 477 a m a p  rp A,Ai - Ai 4 ~ ' r ;  - ff'rm] d t + e i ' 2 ( z )  dw, 

where A,,,, A,, and E have the same meaning as in 8 3 .  To study the effect of the 
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periodic forcing in (25) we follow the theory given in I. The solution of (25) shows 
nearly periodic transition when the following conditions are satisfied 

77 

0 
x ( l  - A ) < < -  

i7 

w 
X ( l  + A ) > > -  

where 
2~a,[ i7 ' (r  - ~)/a,,,]"~ 

~ ' ( 1  - r p / r , , , ) ( 2 r -  1 - r p / r m ) '  
A =  

(i) and  (ii) are the analogues of (a )  and  (b) for (23). 
We studied numerically the validity of (i) and (ii) choosing E ,  = 0.02, w = 2i7/70+0 

a n d B  = 0,013 56. FVe performed numerical integrations for aspect ratios 6&, 8J2, 
10J2, 1242 and 14J2 ,  as in § 4, whh fixed valuegof e, B and w. These values satisfy 
conditions (i) and (ii) for r =  12J2  and r =  14J2. The values of A are 0.5 and 0.67 
respectively. In  figure 5 we plot x, against time for the five aspect ratios. This figure 
has to be compared with figure 1 where the same noise and  aspect ratios have been 
used without a periodic forcing. For r = 12vh and r = 1 4 h  we observe almost periodic 
transitions between the two stable steady states. 

Recalling that (i) and (ii) are obtained using the asymptotic expansion of 8 3, the 
numerical test, performed here, is a further verification of the estimate (18) and (19) 
for the average exit times. 

2 
0 

-2 

( 0 )  

5 00 1000 

Ibl 
2 
0 

-2 
1000 

2 
0 

- 2  

[cl 

[dl  
2 
0 

- 2  

2 
0 

-2 

r (el 
U w w  U'W w 1 

Figure 5. x, as a function of time for equations (24). The parameter values are the same 
as in figure I and B = 0.01 3 56. 
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As discussed in 0 1, it has been observed (Ahlers and Walden 1980, Libchaber 1983) 
that for large aspect ratios the instability sequences which lead to chaotic behaviour 
are characterised by random transitions between two convective structure. Within the 
model described in this paper, we found that for large aspect ratios the effect of any 
stochastic perturbations is amplified by a factor proportional to r2. The mechanism 
of stochastic resonance could be useful in detecting the dynamical features of the 
system by applying to it a periodic forcing with amplitude and period given as a 
function of the noise. An experimental test based on this idea might provide the way 
to measure the value of the noise acting in the system and to test the pattern of the 
convective structures characterising the system. 

6. Conclusion 

In  this paper we have discussed the effect of stochastic perturbations in a particular 
model of a two-dimensional convective fluid. Our model can be regarded as the 
simplest generalisation of the Lorenz model with explicit dependence on the aspect 
ratio of the system. The statistical properties of the model have been studied for value 
of r in the range [ l ,  21 by using the reduced system (13). We have verified that our 
asymptotic approximations agree with the numerical integrations. 

Recently Knobloch and Guckenheimer ( 1983) have discussed a similar model in 
connection with the deterministic behaviour of the BCnard system with large aspect 
ratios. Using projection on the centre manifold, they found that for small values of the 
bifurcating parameter (namely r )  a dynamical system of nine modes can be reduced 
to the amplitude equations for x, and x p  considered in this paper. These amplitudes 
completely describe the behaviour of the system on the centre manifold. In view of 
this result we can argue that, for large aspect ratios, the validity of our analysis is 
independent of the choice of modes (4). If  more degrees of freedom were considered, 
they would be deterministically damped on the centre manifold. In Benzi and Sutera 
(1983), projection on the central manifold was employed in the case of the stochastically 
perturbed Lorenz model. We found that the Landau equation on the centre manifold 
is similar to (20). 

Summarising our results, we have seen that a BCnard system with large aspect ratio 
amplifies the effect of any external or internal stochastic perturbations acting on the 
system. This amplification causes transitions between the two competing convective 
rolls with wavenumber m (the critical wavenumber) and p = m + 1. We offer the 
speculation that the observed random behaviour for large aspect ratios (Ahlers and 
Walden 1980, Libchaberl983) might be induced by a mechanism similar to the one 
discussed in this paper. If this is the case, the mechanism of stochastic resonance 
discussed in § 5 will be useful in laboratory studies for detecting whether the structure 
of the convective flow is similar to the one considered here. 
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Appendix 1 

C Y ,  = r 2 ( 4 m 2 / r 2  + 1 )  
= r2(4p2/r2 + 1 )  

b = 4 r 2 /  C Y ,  

r = L / H  
H =height of the layer 
L = width of the layer 
t+b = dimensionless stream function 

r, = 3 a ; r / 2 m 2 r  
rp = 3a;r/2p2r 

Ra = Rayleigh number 
S,  = ~ T ~ ~ ( ~ / F ) ’ / ~ / c Y , , ,  
S,, = 127r2a;( 1 /6a ,~r , , , )”~ 
a = v / k  Prandtl number 

T, = - 1 2 ~ ~ ( 2 / I ‘ ) ‘ ’ ~ / r ,  
Tp = - 1 2 r 2 ( 2 ~ , / ~ r , r , ~ , ) ’ / Z  
T2 = 1 2 r 2 / r r m  
0 = dimensionless temperature departure from the convective state 
x = horizontal coordinate 
z = vertical coordinate. 

Appendix 2 

In this appendix we derive equations (12) from the set of stochastic differential equations 
( 6 )  using the Smolukowsky-Kramers approximation as reviewed by Schuss (1980). 
Introducing the variables 

the system of stochastic differential equations ( 6 )  transforms to 

dx,=T, d t + E f / ’ d w ,  (A2.1 a )  

d 7, = [ - ( a  + l )vm + a( r - l ) x ,  - aqx, - fx’, - x;xm/2a]  d t  + UE:” dw2 - a e  f ” d wI 

dx, = vp d t  + & : I 2  dw, 

dvp  = [-.(a + I)vp + a 2 a ( R r  - I)x, -aa2Rqxp -faRxZ,x,, 

(A2.1 b )  

(A2.1 c )  

- ; c ~ R x i ] d t  + u c Y E : ’ ~ ~ ~ , - ~ ~ c Y E : ’ ~ ~ w ,  (A2.1 d )  

dq  = [-bq +x;(l  - b / 2 a )  + x ; ( l -  ~ / ~ U C Y ) - & , / U  - E, /UCY]  d t  + dw, 

-EI’2(X, /c+)  d w ,  - E ~ / ~ ( x ~ / c Y V ) ~ W ~  (A2.1 e )  

where CY = c y p / L y ,  and R = r,,,/rp. Introducing the slow time variable s = E t ,  where 
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E = inf(E,), and integrating formally equations (A2.1) we obtain 

(A2.3) 

(A2.4) 

where 

In equations (A2.2), (A2.3) and (A2.4) we now use the approximations 

(A2.5) 

which are good approximations in the limit (a + 1)/ E + CO and b/ E +. CT, i.e. in the limit 
of small noises. Substituting (A2.4) into (A2.2) and (A2.3) and using approximations 
(A2.5) we obtain after a long but straightforward calculations: 

(A2.6) 
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+ A : / ~  dw,(p)+- i,’ [A:’~ dw,(p)-A:’* dw3(p)] 
u + l  

A:i2xp(P) A I i 2  ua R 
-- u + l  J ’  0 xp(p)( A : i ’ d w , ( p ) - ~ x m ( p ) d w l ( p ) -  uff 

(A2.7) 

(A2.6) and (A2.7) are equivalent to the set of stochastic differential equations: 

x’, x;x, 
d s  

U uff F 3 )  b b 
dx, =-- 1 u  [ ( r - I + - + -  .,-----I 

& u + l  

+A;’’[ 1 -- U +A] dw,(s)+A~’2-dw,(s) U 

U + 1 b ( u  + 1) u + l  

U 
X,X~ d w3( S) - A :” - X, d w5( S) 

u + l  

R 
E U + l  

u + l  u + l  
+- 

0+1 

U uRa 
+A;/’= dw4- AI”- xp dw,. 

u + l  

Returning to the original time variable t ,  we finally obtain 

dx, = - [ ( r - 1 +- +- x, - - -- x’, x;x, 
“ U uff ”) b b 

U 

O + 1  

(A2.8) 

(A2.9) 

(A2.10) 

O x2 U 
1 --+-) u + l  u + l  dw, + E : ! ~ - -  u + l  d w2 

XmXp U + E ; / ’  ~ dw3 - & : I 2  - xm dw, 
CY(u + 1) u + l  

R 
E 3 )  b U uff 

U U R  
u + l  u + l  u + l  

dw4-&: ’- xp dw, 

U 
dx, = - [ CY ( Rr - 1 +- + - xp - - xPxi  - 

u + l  

CYR +- ~ ” ~ x g ,  dw, + E : ’ * (  1 --+- xi )  dw, 

URCY 
u + l  u + l  

(A2.1 1) + & ; I ?  (T 

which are the equations used in 5 3. 
I t  is interesting to observe that for xp = 0 (i.e. fot the Lorenz model) equation (A2. I O )  

reduces to the Landau equation which is known to hold for small value ofthe bifurcating 
parameter r. This result shows, in some sense, the consistency of our approach in 
calculating the statistical properties of equations (6 )  for small value of r and E , .  Finally 
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let us remark that the change of variables used in this appendix is equivalent to putting 
equations (6) in the Arnold-Jordan form by which the computation of the centre 
manifold can be readily carried out (see Knobloch and Guckenheimer 1983). It turns 
out that the equations of the centre manifold are in the deterministic part of equations 
(A2.10) and (A2.11). 
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